第二百五十章 混沌理论
    舒云鹏笑得前合后仰,几乎喘不过气来。艾米莉无意中的偷换概念,让梁晶晶苦着脸说不出话来了。

    其实传输问题看似是戴森球的一个弱点,从理论上来讲,必须发明一种输送能量的方法,使得卫星能够把太阳晒不到地球部分的能量(比如太阳背面)发回地球,否则戴森球没有意义,因为输能方式一定是太阳辐射=》什么东西=》地球,这个转换过程中一定有损失,那么本来直接辐射到地球的能量因为这种转换反而减少了,得不偿失。事实上,直射地球的那部分不如直接在地球上建立太阳能收集器来的划算,戴森球应当是帮助把辐射不到地球的那部分太阳能拿到地球来,才可以提高地球可用的能源。从这个角度看,如果人类还是需要在地球利用能源,传输问题到不复杂了,其实戴森云建成一系列角度可调的镜子就可以了,  这样就可以很容易的把太阳背面的能量反射到冲着地球,然后在地球上建立接受器就可以了。这个接收器阵列很有可能需要建到太空,需要吸收掉部多反射过来的能量,不然可能会把地球煮熟了。

    但是在地球上利用能源这多反射回来的太阳能还是有问题,因为地球向外的热辐射是一定的,散热速率有限,毕竟宇宙是真空的,那么多来的能量会不停的加热地球,那么地球很可能跟火星一个下场。(说到这里不禁倒吸一口凉气,难道火星就是这么完蛋的?)因此,这能量应当还是在太空利用才能避免地球的生态灾难。

    “知道什么是蝴蝶效应吗?”舒云鹏总算止住了笑,问艾米莉。

    戴森球本质上其实就是一种能量接收转换装置,这种结构缠绕在恒星周围,利用恒星能来帮助文明发展。恒星每分每秒都会产生巨大的能量,比如太阳每秒释放出的能量就足够目前人类使用上百万年。文明的发展是必须依赖于能量的,而戴森球在理论上就可以成为一个文明最有效的能量来源。

    可想要建造一个戴森球,单不说难度,“铺张浪费”是肯定的。因为想要建造环绕甚至是包裹恒星的巨型结构需要消耗大量的物质。在我们太阳系中,太阳的质量就占比高达百分之998,如果要建造太阳的戴森球,就需要超过四个巨行星的物质。也就是说,把太阳系除了太阳以外的所有天体部拆了,还不一定做得到!

    更不用说为了获取这些物质需要克服巨行星行星的重力结合能,需要巨大的能量。因此,想要建造戴森球,就一定得解决能量来源问题,这已经不是光靠核能就能解决的了。

    “不知道!”艾米莉说。

    近距离伽马暴可能灭绝任何比微生物更加复杂的生命形式。由此,两位天文学家声称,只有在大爆炸发生50亿年之后,只有在10的星系当中,才有可能出现类似地球上这样的复杂生命。

    宇宙或许比先前人们想象的要更加孤单。两位天体物理学家声称,在可观测宇宙预计约1000亿个星系当中,仅有十分之一能够供养类似地球上这样的复杂生命。而在其他任何地方,被称为伽马暴的恒星爆炸会经常性地清除任何比微生物更加复杂的生命形式。两位科学家说,这些的爆炸还使得宇宙在大爆炸后数十亿年的时间里,无法演化出任何复杂的生命。

    科学家一直在思考这样一个问题,伽马暴有没有可能近距离击中地球。这种现象是1967年被设计用来监测核武器试验的人造卫星发现的,目前大约每天能够检测到一例。伽马暴可以分为两类。短伽马暴持续时间不超过一两秒钟;它们很可能是两颗中子星或者黑洞合二为一的时候发生的。长伽马暴可以持续数十秒钟,是大质量恒星耗尽燃料后坍缩爆炸时发生的。长伽马暴比短伽马暴更罕见,但释放的能量要高大约100倍。长伽马暴在短时间内发出的伽马射线,可以比宇宙都要明亮。

    持续数秒的高能辐射本身,并不会消灭附近一颗行星上的生命。相反,如果伽马暴距离足够近,它产生的伽马射线就有可能触发一连串化学反应,摧毁这颗行星大气中的臭氧层。没有了这把保护伞,这颗行星的“太阳”发出的致命紫外线就将直射行星地表,长达数月甚至数年——足以导致一场大灭绝。

    这样的事件发生的可能性有多高?在即将发表在《物理评论快报》(physibsp; review  letters)上的一篇论文中,以色列希伯莱大学的理论天体物理学家斯维·皮兰(tsvi  piran)和西班牙巴塞罗纳大学的理论天体物理学家保罗·希梅内斯(raul  jez)探讨了这一灾难性的场景。

    天体物理学家一度认为,伽马暴在星系中气体正迅速坍缩形成恒星的区域里最为常见。但最近的数据显示,实际情况要复杂许多长伽马暴主要发生在“金属丰度”较低的恒星形成区域——所谓“金属丰度”,是指比氢和氦更重的所有元素(天文学家所说的“金属”)在物质原子中所占的比例。

    利用我们银河系中的平均金属丰度和恒星的大致分布,皮兰和希梅内斯估算了银河系内两类伽马暴的发生几率。他们发现,能量更高的长伽马暴可以说是真正的杀手,地球在过去10亿年间暴露在一场致命伽马暴中的几率约为50。皮兰指出,一些天体物理学家已经提出,可能正是伽马暴导致了奥陶纪大灭绝——这场发生地45亿年前的球灾变,消灭了地球上80的生物物种。

    接下来,这两位科学家估算了银河系不同区域内一颗行星被伽马暴“炙烤”的情形。他们发现,由于银河系中心恒星密度极高,距离银心6500光年以内的行星在过去10亿年间遭受致命伽马暴袭击的几率高达95以上。他们总结说,复杂生命通常只可能生存于大型星系的外围。(我们自己的太阳系距离银心大约27万光年。)

    其他星系的情况更不乐观。与银河系相比,大多数星系都更小,金属丰度也更低。因此,两位科学家指出,90的星系里长伽马暴都太多,导致生命无法持续。不仅如此,在大爆炸后大约50亿年之内,所有星系都是如此,因此长伽马暴会导致宇宙中不可能存在任何生命。

    90的星系都是不毛之地吗?美国沃西本恩大学的物理学家布莱恩·托马斯(brian  thoas)评论道,这话说得可能有点太过。他指出,皮兰和希梅内斯所说的伽马射线照射确实会造成不小的破坏,但不太可能消灭所有的微生物。“细菌和低等生命当然有可能从这样的事件中存活下来,”皮兰承认,“但对于更复杂的生命来说,伽马射线照射确实就像按下了重启按钮。你必须一切重头开始。”

    皮兰说,他们的分析对于在其他行星上搜寻生命可能具有现实意义。几十年来,seti研究所的科学家一直在用射电望远镜,搜寻遥远恒星周围的行星上可能存在的智慧生命发出的信号。不过,seti的科学家主要搜寻的都是银河系中心的方向,因为那里的恒星更加密集。而那里正是伽马射线导致智慧生命无法生存的区域。皮兰说,“或许我们应该朝完相反的方向去寻找。”

    蝴蝶效应是指在一个动力系统中,初始条件下微小的变化,能带动整个系统产生长期和巨大的连锁反应,这是一种混沌现象。任何事物发展均存在定数与变数,事物在发展过程中其发展轨迹有规律可循,同时也存在不可测的“变数”,一个微小的变化很可能影响事物发展的方向。

    再说一个例子超弦理论。当今可以说分成了两大派别,一派是坚持不可证伪的理论不是科学理论,而另一派则说对手是波普尔的跟屁虫。哈佛大学教授皮特·盖里森(peter  galison)指出双方争论的核心“这是一场有关物理学本质的争论。”

    宇宙学家乔治·埃利斯(gee  ellis)批评弦理论说“最让我恐慌的是,若不能通过实验检验的理论可以成为科学,那么科学和装神弄鬼的废话,或者科幻小说也就没了区别。”

    瑞典物理学家霍森菲尔德  (sabe  hossenfelder)说“‘无需实验证明的科学’,这个名词本身就是自相矛盾的。”

    对这个效应最典型的阐述是“一只南美亚马逊流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周后引起美国德克萨斯州的一场龙卷风。”

    。